HSSMI | **#** Scottish Enterprise | ARUP

Manufacturing for Clean Heat in Scotland

Factsheet 3: Heat in Properties

Pages	Contents						
2-3	Introduction						
	Main Components:						
4-8	Radiators						
9-13	Underfloor Heating						
14-18	Infrared Panels						
19-22	Hot water Cylinder						
23-27	Thermal Storage Heaters						
28-32	Summary of Manufacturing Processes						
33-34	Market Information						
35	Next Steps						

What is Clean Heat?

Clean heat refers to heat generation, distribution, and building energy efficiency technologies that provide heating and hot water with minimal environmental impact. Key technologies include heat pumps, heat networks, and direct electric systems, supported by measures to reduce heat demand and optimise usage through sensors, controls, and efficient design.

These factsheets aim to guide Scottish manufacturers to understand and enter the clean heat sector. Factsheet 3 focuses on key technologies used for heating in properties.

Factsheet 1	Factsheet 2	Factsheet 3	Factsheet 4	Factsheet 5	Factsheet 6
Heat Generation	Heat Network Distribution	Heat in Properties	Technology Enablers	Building Energy Efficiency	Energy Centre Construction
 Industrial Heat Pumps Domestic Heat Pumps Electrode Boilers Electric Boilers Geothermal Drill Rigs 	 Pipework Circulation Pumps Valves Corrosion Control Storage Buffers 	 Radiators Underfloor Heating Infrared Panels Hot Water Cylinders Storage Heaters 	 Control Panels Thermostats Sensors and Meters Actuators Design Apps 	 Cladding Insulation Windows & Doors Ventilation Systems Offsite Manufacturing 	 Large Thermal Store Large Pumps Structural Steel Electrical Switchgear Cabling

Clean heat presents significant market opportunities for Scotland, UK and internationally. Clean heat is essential for all buildings to meet Scotland's 2045 net-zero target. This will be achieved via Local Heat and Energy Efficiency Strategies, regulations, and the proposed Heat in Buildings Act. Already, from April 2024, all new buildings must include clean heat systems. Existing buildings will require energy efficiency upgrades and clean heat retrofits and urban areas will see new heat networks (Heat Networks Act 2021).

Clean heat technologies in properties are designed to reduce greenhouse gas emissions and improve energy efficiency.

Key heat in property technologies include:

- Radiators
- Underfloor heating
- Infrared panels
- Hot water cylinders
- Thermal storage heaters

What are cleat heat in property technologies?

Clean heat in property technologies are systems designed to emit or store heat within a property.

Benefits of Clean Heat in Property Technologies:

The benefits of clean heat in property technologies are amplified when used in conjunction with clean energy sources.

- Radiators Even heat distribution, quiet operation, improved air quality, durability
- Underfloor Heating Even heat distribution, space-saving, improved air quality, comfort
- Infrared Panels Direct heating, energy efficiency, low maintenance, health benefits, aesthetic flexibility
- Hot Water Cylinders Reliable way to store and provide hot water for household needs. Heat can also be stored in heat batteries using phase change materials, but this specialist equipment is not included in this factsheet
- Thermal Storage Heaters access to off-peak electricity prices, reduce peak grid demand and provide grid stability

Heat in Properties: Radiators - Introduction

HSSMI 🦸 🕫 Scottish Enterprise

ARUP

Radiators as part of a clean heat solution can efficiently heat buildings using renewable energy sources.

Key Bill of Materials

- 1 90 spigot elbow (HD4/10)
- 2 Radiator Drainlock
- 3 Thermostatic Radiator Valve
- **4** Pipe Clip (HX84/10)
- **5** 90 elbow (HD5/10)

Key subcomponents of a radiator are the body panel, heating elements along with their associated pipes and valves.

The typical manufacturing processes are detailed below for the assembly of a radiator.

The typical manufacturing processes are detailed below for the assembly of a radiator.

8

Main materials and characteristics used radiator manufacturing.

	Component	Material	Dimensions*	Weight*	Standards
	Casing	Steel or Cast Iron	70 cm (w), 100 cm (l), 10 cm (d)	1 kg to 3 kg	BS EN 442
Body Panel	Wall mounts	Steel or Cast Iron	5 cm to 10 cm (w), 5 cm to 10 cm (l), 5 cm to 10 cm (d)	0.05 kg to 0.1 kg	BS EN 442
	Protection (optional)	Paint coating	-	Negligible	BS EN ISO 12944, BS 3962-6, EN 71-3
Heating Element	Fins	Steel or Aluminium	0.3 mm to 1 mm (t)	0.1 kg to 0.3 kg	BS EN 442
	Pipe / Valve Body	Stainless Steel or Brass	0.01 m to 0.15 m (d), 0.05 m to 0.3 m (l)	0.2 kg to 2 kg	ISO 5149, EN 378
lves	Diaphragm	Rubber or Synthetics	0.025 m to 0.15 m (d), 0.0025 m to 0.005 m (t)	0.02 kg to 0.2 kg	ISO 5149, EN 378
s & Valv	Spring	Various	0.01 m to 0.05 m (d), 0.0025 m to 0.15 m (l)	0.01 kg to 0.1 kg	ISO 5149, EN 378
Pipe	Orifice	Stainless Steel or Brass	0.0005 m to 0.01 m (d), 0.005 m (l)	0.005 kg to 0.05 kg	ISO 5149, EN 378

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

Heat in Properties: Underfloor Heating - Introduction

ARUP

Underfloor heating offers high energy efficiency, reduced emissions, and enhanced safety, whilst minimising maintenance.

Key Bill of Materials

1 Floor finish

2 Perimeter insulation

3 Screed

4 Slip layer

5 WARMUS 16x2 MLC pipe

6 Floor insulation

7 UFH clips

8 Acoustic layer (if required)

Diagram of underfloor heating.

日

🛛 📉 нѕѕмі 📔 🏂

Scottish Enterprise | ARUP

Key subcomponents of underfloor heating are shown below, along with their key parameters.

Heating	Heating Elements (Pipes and Valves) A network of pipes embedded under the floor surface; they carry warm water		Insulation Layers Prevent heat loss to the ground or subfloor, directing the heat upward into the room, enhancing energy			Manifold Acts as the central distribution hub that regulates the flow of heated water from the boiler or heat source	
Elementsacross the floor area.SubcomponentsPolyethylene pipes		Insulation Layers	efficiency and reducing heating costs.		Manifold	to various underfloor heating circuits.	
Typical Weight	(diam) pipe 12 mm to 20 mm (diam) (16mm most	Subcomponer	Polymer mortar, hard foam boards, bottom reflective insulation		Subcomponents	Supply and return pipes, flowmeters, valves	
Typical Dimensions	common), spacing typically 200mm, these values are	Typical Weigh	foil. 1 kg to 2.5kg / m ² for foil-faced EPS/XPS		Typical Weight	5 kg to 8 kg (brass) or 3 kg to 6 kg (stainless steel) for an average of 4-6 circuits	
	designed heat output, floor type and room insulation.	Typical Dimensions	Covers full floor area, 30 mm thickness on average BS EN 1264, BS 5955-8, BS EN 12086, ISO 11855, ISO 6946.		Typical Dimensions	50 cm x 50 cm x 15 cm for an average of 4-6 circuits	
Standards	BS EN 1264, BS 5955-8, ISO 11855, ISO 10508	Standards			Standards	BS EN 1264, BS EN 12165, BS EN 14324	

—

■ A<u>RU</u>P

The typical manufacturing processes are detailed below for the assembly of an underfloor heating system.

The typical manufacturing processes are detailed below for the assembly of an underfloor heating system.

🗙 нѕѕмі 📔 💈

Main materials and characteristics used in underfloor heating manufacturing.

	Component	Material	Dimensions*	Weight*	Standards		
Insulation Layer	Reflective Foil	Aluminium	Dependent on requirements	Dependent on requirements	BS EN 1264, ISO 8302		
	Inner PEX	Cross-linked Polyethylene					
cing nent	Core	Aluminium	12 mm to 20 mm (diam)	Dependent on requirements	BS EN 1264, BS EN 60335-2-96		
Heat Elem	Outer PEX	Cross-linked Polyethylene					
	Pump Casing	Stainless Steel or Cast Iron	0.1 m to 0.6 m (diam), 0.15 m to 1.5 m (l)	1 kg to 3 tonnes	ISO 5199, ANS/HI 9.6.1		
muc	Impeller	Bronze or Stainless Steel	0.5 m to 0.4 m (diam), 0.05 m to 0.3 m (l)	0.2 kg to 500 kg	ISO 9906		
iifold I	Motor	Copper, Steel and Carbon	0.1 m to 0.5 m (diam), 0.15 m to 1 m (l)	2 kg to 3 tonnes	IEC 60034		
Man	Shaft	Carbon or Stainless Steel	0.1 m (diam), 0.1 m to 0.3 m (l)	0.1 kg to 500 kg	ISO 1940		
e S	Body	Stainless Steel or Brass	0.01 m to 0.15 m (diam), 0.05 m to 0.3 m (l)	0.2 kg to 2 kg			
Pipe	Diaphragm	Rubber or Synthetics	0.025 m to 0.15 m (diam), 0.0025 m to 0.005 m (t)	0.02 kg to 0.2 kg	ISO 5149, EN 378		
ifold es	Spring	Various	0.01 m to 0.05 m (diam), 0.0025 m to 0.15 m (l)	0.01 kg to 0.1 kg			
Man Valv	Orifice	Stainless Steel or Brass	0.0005 mm to 0.01 m (diam), 0.005 m (l)	0.005 kg to 0.05 kg			

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

ARUP

Infrared heating panels offer high efficiency, reduced emissions, and enhanced safety, whilst minimising maintenance.

Key Bill of Materials

- 1 Metal case with double layer of paint
- 2 Protective layer
- 3 Thermal insulation
- 4 Ceramic heating element
- 5 Heat-dissipating quartz layer
- 6 Front temperature up to 80°C
- **7** Back temperature up to 50°C
- 8 Infrared long wave heating

Diagram of infrared heating panels.

Ξ

HSSMI 🛛 🕖 Scottish Enterprise

ARUP

Key subcomponents of infrared heating panels are shown below, along with their key parameters.

	Insulation Layers These layers directs heat outward, ensuring minimal energy loss to the back or sides of the panel,		Heating Element The heating element converts electrical energy into heat and emits infrared radiation in the desired			Structural Parts Serve as the supporting structure for panels.
Insulation Layers	energy efficiency.	Heating Element	wavelength range.	Structural Parts		
Subcomponents	Reflective layer, insulation	Subcomponents	Heating element core, substrate, electrical	Subcomponents	Back layer	ing plate, surface ; outer frame,
Typical Weight	Dependent on size and material used.	Typical Weight	Dependent on size and material used.	Typical Weight	Depe and	endent on size material used.
Typical Dimensions	100 cm x 60 cm for an average infrared panel	Typical Dimensions	Dependent on size	Typical Dimensions	100 avera	cm x 60 cm for an age infrared
Standards	ISO 8302	Standards	BS EN 60335-2-96, BS EN 55014	Standards	BS E	N ISO 10456

HSSMI [#]Scottish Enterprise

The typical manufacturing processes are detailed below for the assembly of an infrared heating panel system.

HSSMI **#**Scottish Enterprise

ARUP

The typical manufacturing processes are detailed below for the assembly of an infrared heating panel system.

HSSMI *F*Scottish Enterprise

ARUP

The table below summarises the key design data required for infrared heating panel manufacturing.

	Component	Material	Dimensions*	Weight*	Standards	
	Backing plate Aluminium or Steel		100 cm (l) x 60 cm (w) x 0.2 cm (d)	2 kg to 5 kg		
arts	Surface layer	Tempered glass, Aluminium, Ceramic	100 cm (l) x 60 cm (w) x 0.2 cm (d)	2 kg to 5 kg		
ural pa	Outer frame	Aluminium or Stainless Steel	100 cm (l) x 60 cm (w) x 0.2 cm (d)	2 kg to 5 kg	D3 LIVISO 10430	
Structu	Mounting & supports	Aluminium or Stainless Steel	10 cm to 20 cm (l), 0.2 to 0.4 mm (d)	0.5 kg to 1 kg		
ng ent	Substrate	Nichrome Alloy (Nickel- Chromium), Carbon Fibre or Ceramic	Dependent on system	Dependent on system	BS EN 60335-2-96, BS EN	
Heatir Eleme	Electrical insulation	Magnesium Oxide	requirements	requirements	55014, BS EN 60335-2-30	
tion	Insulation	Fibreglass or Mineral wool	100 cm (l) x 60 cm (w) x 2.5 cm (d)	1 kg to 6 kg / m²	150 8302	
Insulat Layer	Reflective layer	Aluminium	100 cm (l) x 60 cm (w)	0.5 kg to 1 kg / m ²	150 0502	

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

Scottish Enterprise | ARUP

Hot water cylinders store hot water and can enable grid flexibility services (see page 3).

Diagram of a hot water cylinder.

Key Bill of Materials

- 1 Cylinder Shell
- 2 Heating Element
- 3 Anode Rod
- 4 Thermostat
- 5 Insulation
- 6 Relief Valves
- 7 Dip Tube
- 8 Overflow Pipe
- Cold water in
- Hot water out

Key subcomponents of hot water cylinder are shown below.

Mhssmi

Scottish Enterprise

ARUP

The typical manufacturing processes for the assembly of a hot water cylinder.

Main materials and characteristics used in hot water cylinder manufacturing.

Component	Material	Dimensions	Weight	Standards
Cylinder Shell	Stainless Steel, Copper	0.5 to 2 m	Tens of kilograms	BS 6700, BS EN 12897
Electric Heating Elements	Copper, Stainless Steel	0.5 m	0.5 kg to 1 kg	IEC 60335-2-21 for safety of Electric Heating Elements
Anode Rod	Magnesium, Aluminium	0.02 m (d) x 1 m (l)	1 kg to 2 kg	ASTM B843 for magnesium alloy anodes
Safety Valves	Stainless Steel, Brass	0.1 m	Few kg	ASME BPVC Section VIII for pressure relief devices
Thermostat	Plastic, Copper, Stainless Steel	0.1 m	0.1 kg to 0.2 kg	IEC 60730-1

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

Heat in Properties: Thermal Storage Heaters - Introduction

ARUP

Thermal Storage Heaters offer access to cheaper electricity tariffs making the transition to an electric solution affordable.

Key Bill of Materials

- **1** Vacuum Insulation Panels
- 2 Heat Battery
- 3 Aluminium Case

Diagram of a thermal storage heater.

∍ | ARUP

Key subcomponents of thermal storage heaters are shown below, along with their key component parameters.

Heat Battery	Heat Battery Stores and releases high thermal energy using high heat retention storage materials		Aluminium Case	Aluminium Case A white powder- coated aluminium case, which offers pipework knockouts on any face for easy installation.	VacuumVacuum InsulationPanelsAn insulation panelAn insulation providing low intermproviding low intermpressure and lowdensity contributinghigh thermalperformance.Heat resistance: -50to +120°C		cuum Insulation nels insulation panel oviding low internal essure and low nsity contributing to gh thermal rformance. at resistance: -50°C +120°C
Subcomponents	Heat retention materials, Insulation	2	Subcomponents	Supply and return pipes, flowmeters, valves, pipes.	Subcompone	ents	Microporous material
Typical Weight	20 kg to 200 kg		Typical Weight	5 kg to 10 kg	Typical Weig	ht	0.75 kg to 1.5 kg
Typical Dimensions	0.5 m to 1 m (h,w,l)		Typical Dimensions	Dependent on use case	Typical Dimensions		Covers full area, 20 mm thickness as
Standards	BS EN 60335-1, BS EN 303-5	!	Standards	BS EN 1264, BS EN 12165, BS EN 14324	Standards		DIBT Z-23.11-1662

Typical manufacturing processes for the assembly of thermal storage heaters and the fabrication of the major components.

Typical manufacturing processes for the assembly of thermal storage heaters and the fabrication of the major components.

Main materials and characteristics used in thermal storage heater manufacturing.

	Component	Material	Dimensions*	Weight*	Standards
rage	Heat Battery	Ceramics, Concrete, Masonry	Capacity - 70 to 300 litres 0.7 m to 1.5 m (h) x 0.3 m to 0.6 m (w) x 0.3 m to 0.6 m (d)	20 kg to 200 kg	BS EN 60335-1, BS EN 303-5
mal Energy Sto	Vacuum Insulation Panel	Polyethylene (PE), Polyethylene terephthalate (PET), Polyurethane, Glass Fibre, Fused Silica	Thickness - 20 mm to 50 mm Panel Size - 1 m (w) x 1.3 m (h)	0.75 kg to 1.5 kg	DIBT Z-23.11-1662
Ther	Casing	Aluminium	Dependant on use	Dependent on use	ISO 9001

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

Β

нязмі 🛛 🛓

Scottish Enterprise | ARUP

The table below summarises the key processes and equipment required for radiator manufacturing.

Process	Equipment/Facilities	Body Panel	Heating Element (fins)	Pipes and Valves
Storage and Logistics	Shelving and Racking systems, Forklifts, Conveyors, Warehouse Management Systems	Х	Х	Х
Casting	Furnaces, Molds, Casting Machines	Х	Х	Х
CNC Machining	CNC Machining Centres, CNC Lathes, CNC Plasma Cutting Machines, CNC Grinders,	Х	Х	Х
Milling, Drilling and Turning	CNC Drilling Machines, CNC Boring Mills	Х	Х	Х
Tube/Pipe Forming and Bending	CNC Tube Benders, Roll Bending Machines, Press Benders	Х		Х
Sheet Metal Forming and Bending	Press Brakes, Stamping Presses, Folding machines	Х	Х	Х
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, Fabrication Tools, Furnace	Х		Х
Electronic Controls, Cabling and Wiring	Motors, PCB's, HMI & Various Components, Connectors, Cable, Insulation		Х	
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х	Х	Х
Final Test & QA	Vision Inspection, EOL testing	Х	Х	х

42

HSSMI 🛛 ቻ so

Scottish Enterprise | ARUP

The table below summarises the key processes and equipment required for underfloor heating manufacturing.

Process	Equipment/Facilities	Heating Element	Insulating Layers	Manifold Pump	Manifold Pipes & Valves
Storage and Logistics	Shelving and Racking Systems, Forklifts, Conveyors, Warehouse Management Systems	Х	Х	Х	X
Casting	Furnaces, Molds, Casting Machines	Х		Х	
CNC Machining	CNC Machining Centres, CNC Lathes, CNC Grinders,	Х		Х	X
Milling, Drilling and Turning	CNC Drilling Machines, CNC Boring Mills	Х		Х	Х
Tube/Pipe Forming and Bending	CNC Tube Benders, Roll Bending Machines, Press Benders	Х		Х	Х
Sheet Metal Forming and Bending	Press Brakes, Stamping Presses, Folding Machines	Х		Х	Х
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, Fabrication Tools, Furnace	Х		Х	X
Electronic Controls, Cabling and Wiring	Motors, PCB's, HMI & Various Components, Connectors, Cable, Insulation	Х		Х	Х
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х	Х	Х	Х
Final Test & QA	Vision Inspection, EOL testing	Х	Х	Х	X

ARUP

The table below summarizes the key processes and equipment required for infrared heating panel manufacturing.

Process	Equipment/Facilities	Structural Parts	Heating Element	Insulation Layers
Storage and Logistics	Shelving and Racking Systems, Forklifts, Conveyors, Warehouse Management Systems	Х	Х	Х
Forming	Furnaces, Extrusion Equipment, Wire Drawing, Coiling Machines, Drilling / Cutting Machines	Х	Х	Х
CNC Machining	CNC Machining Centres, CNC Lathes, CNC Plasma Cutting Machines, CNC Grinders,	Х		
Sheet Metal Forming and Bending	Press Brakes, Stamping Presses, Folding Machines	Х		
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, Fabrication Tools	Х		
Electronic Controls, Cabling & Wiring	Motors, PCB's, HMI & Various Components, Connectors, Cable, Insulation		Х	
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х	Х	Х
Final Test & QA	Vision Inspection, EOL testing	Х	Х	Х

📉 HSSMI 🛛 ቻ

Scottish Enterprise | ARUP

Summary of the key processes and equipment required for manufacturing hot water cylinders.

Process	Equipment/Facilities	Hot Water Cylinder
Tube / Metal Forming and Bending	Roll Bending Machines, Stamping Presses	Х
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, and Fabrication Tools, Furnace	Х
Heat Treatment	Furnaces, Quenching Equipment, Induction Hardening Machines, Tempering Furnaces	Х
Painting including Powder Coating and Plating	Spray Booths, Powder Spray Guns, Powder Feed System, Curing Ovens, Mixing and Dispensing Systems	Х
Electronic Controls, Cabling and Wiring	Motors, PCB's, HMI and Various Components, Connectors, Cable, Insulation	Х
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х
Clean Room	Air Filtration and Ventilation Systems, Environmental Control Systems, Monitoring and Testing Equipment	Х
Final Test and Quality Control	Pressure and Electrical Testing Equipment, Vision Inspection, EOL Testing	Х

HSSMI **F** Scottish Enterprise

ARUP

The table below summarises the key processes and equipment required for thermal storage heater manufacturing.

Process	Equipment/Facilities	Heat Battery	Vacuum Insulation Panels	Aluminium Case
Storage and Logistics	Shelving and Racking Systems, Forklifts, Conveyors, Warehouse Management Systems	Х	Х	Х
Forming	Extrusion and Molding Machines, Stamping Press, Mixing Machines, Folding Machines, Cutting Machines , Vacuum Chambers	Х	Х	Х
Machining	CNC Machining Centres, CNC Lathes, CNC Plasma Cutting Machines, CNC Grinders,			Х
Milling, Drilling and Turning	CNC Drilling Machines, CNC Boring Mills			Х
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, Fabrication Tools, Furnace			Х
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х	Х	X
Final Test and QA	Vision Inspection, EOL testing	Х	Х	Х

ARUP

Key market data for heat in properties over the coming decade.

Radiators

The global heating radiator market was £3.5 billion in 2021, with a compound annual growth rate (CAGR) of 4.5% from 2022 to 2030.

Europe's heating radiators market size was £2 billion in 2022 and is poised to grow at a CAGR of 8% to £4 billion by 2030.

Underfloor Heating

Underfloor heating accounts for 8% market share by value in 2021. The current UK market size is £435 million and is estimated to grow at 7% CAGR to £670 million by 2029.

Growth drivers are energy efficiency, low maintenance and supply of consistent heating to properties.

The water-based market is expected to grow faster than the electric market due to higher efficiency. Domestic applications dominate, but growth is expected in schools, hospitals and commercial properties. Most are installed in new builds but is becoming popular when renovating properties.

The market in Europe and USA is valued at £4 billion in 2024, growing at 7% CAGR to £6 billion by 2029.

Infrared Heating Panels

The global infrared heaters market size was estimated to be £800 million in 2023 and is projected to grow at a CAGR of 6% to £1.1 billion by 2030.

Growth is driven by their ease of installation and compatibility with renewable energy sources, such as solar panels.

Hot Water Cylinders

The UK market is predicted to grow at 4% per year between 2024 and 2027, supported by the Future Homes and Buildings Standard (2025).

Thermal Storage Heaters

1.4 million UK homes have thermal storage heaters as their primary heating system. The market is poised for growth, supported by technological advancements and policy measures aimed at reducing carbon emissions.

Modern storage heaters feature advanced controls, smart thermostats, and can integrate with grid services and renewable energy sources.

ARUP

Support available and competitor analysis.

Scotland

The Scottish Government's Heat in Buildings Strategy details the main support mechanisms to encourage clean heat in Scotland. A new Heat in Buildings Act is expected soon outlining the route to achieve zero heating emissions by 2045.

Scottish Local Authorities have a Local Heat and Energy Efficiency Strategy (LHEES) and a LHEES Officer (or similar) providing a local view of plans for clean heat systems.

There are grants and loans available to encourage the installation of clean heat systems:

- Home Energy Scotland administer these for domestic properties;
- Business Energy Scotland administer these for commercial properties, including the SME Loan Fund.

The Smart Direct Electric Heat Forum, based in Scotland and administered by SELECT, is a new forum for manufacturers of direct electric heat solutions.

Competitor Analysis

Radiators

• Manufacturers are Zehnder (Switzerland), Reina (England), Paladin England), Eskimo (England), and AEON (England).

Underfloor heating

 Manufacturers are Flexel International (Scotland), Nu-Heat (England), Polypipe (England), Emmeti UK (England), and Timoleon (England)

Infrared Heating Panels

• Flexel International (Scotland), Herschel (England), and Tansun (England), are examples of manufacturers.

Hot Water Cylinders

- McDonald Water and Mitsubishi manufacture in Scotland, along with Dimplex (England), Worcester Bosch (England), Baxi (England) and Vaillant (Germany)
- Sunamp manufacture phase change heat batteries in Scotland, as an alternative to hot water cylinders.

Thermal Storage Heaters

• GlenDimplex manufacture storage heaters in Ireland and England.

Scottish Enterprise can support you to explore growth in clean heat.

Clean Heat Market Opportunities

Clean heat will play a crucial role in meeting Scotland's net zero targets. There is a huge growth potential for Scottish businesses too.

- For general enquiries, and to access our Clean Heat team, please contact us
- For specialist advice on manufacturing and productivity, <u>contact the Scottish</u> <u>Manufacturing Advisory Service (SMAS)</u>
- For information on domestic and international markets contact our <u>Market</u>
 <u>Research service</u>
- If you are based in the Highlands and Islands, or the south of Scotland, please contact <u>Highlands and Islands Enterprise</u> or <u>South of Scotland</u> <u>Enterprise</u> respectively.

Newsletter

Please complete this subscription form if you would like to receive an occasional newsletter from Scottish Enterprise on market opportunities relating to clean heat.

<u>Subscribe here</u>

Further Reading

- <u>Economic Value of Clean Heat in Scotland</u> (2024)
- <u>Market Opportunities for Scottish Direct</u> <u>Electric Heat</u> (2023)

External Innovation Support Services in Scotland

- National Manufacturing Institute Scotland (NMIS) provides access to world-leading manufacturing facilities for collaborative R&D projects
- <u>Built Environment Smarter Transformation</u> (<u>BE-ST</u>) provides collaborative innovation space and expertise for projects and materials for the built environment

