# ELECTROLYSERS

## Introduction

Electrolytic hydrogen is produced by applying electricity to split a pure water source into its component molecules of hydrogen and oxygen. Electrolysers, or more precisely electrolyser stacks, are the primary electrochemical component in an electrolytic hydrogen production system and are supported by auxiliary components required for functions such as water and electricity supply, cooling and purification. The hydrogen produced from the electrolyser stack is purified through separation and drying processes, whilst oxygen is released into the atmosphere or can be captured or stored to supply other industrial processes.

Electrolyser stacks are comprised of two electrodes (a positively charged anode and a negatively charged cathode) that are separated by an electrolyte, which is the medium responsible for transporting the chemical charges (ions) from one electrode to the other. A variety of electrolyser technologies exist that each present their own opportunities and potential challenges.



©Aberdeen City Council

### **Electrolyser Technologies**

| Technology | Operating<br>Temperature | System<br>Efficiency |
|------------|--------------------------|----------------------|
| PEM        | <100°C                   | c. 60%               |
| AE         | <100°C                   | c. 60%               |
| SOE        | 500-850°C                | 80-90%               |







# Alkaline Electrolyser

## Overview

Alkaline electrolyser (AE) stacks consist of two electrodes. The electrolyte is in a liquid form and the electrodes and generated gas are physically separated via a porous inorganic diaphragm, also known as separator.

Alkaline electrolysers are the most mature technology, and their long-term stability allows them to be used in industry for the large-scale production of hydrogen for different end uses. Alkaline electrolysers present the simplest stack and system design, which translates to ease of manufacture and is ultimately the cheapest electrolysis technology.

A 3D diagram of an Alkaline electrolyser including all the auxiliary components associated with a complete system is shown here. As well as the electrolyser stack, the system includes key components required to supply the input water and mix it with the potassium hydroxide electrolyte, supply the input electricity, cool the system as required and purify the outputs from the stack.





# Alkaline electrolysis componentry

## Alkaline electrolysis stack

The electrolyser stack forms the heart of the overall electrolyser system and is where the hydrogen production takes place. The electrolyser stack consists of numerous electrolyser cells, which in turn comprise an electrolyte and two electrodes, namely the anode and cathode. Hydrogen is produced at the cathode, whilst oxygen gas is generated at the anode. Alkaline electrolysis uses a concentrated solution of potassium hydroxide (KOH) in water as the electrolyte, which is continuously recirculated through the cell. The two electrodes are typically separated by a microporous composite membrane, or diaphragm, which is soaked in the electrolyte solution to allow ionic transfer, whilst minimising crossover of hydrogen and oxygen gases to the other electrodes. Crossover or mixing of oxygen and hydrogen reduces cell efficiency but more importantly is a safety hazard and must be avoided. This is done through keeping current density at reduced levels, working at reduced gas pressures and by increasing diaphragm thickness. Multiple stacks can be combined to increase system size and hydrogen production capacity.

## **KOH electrolyte circulation**

The lye solution is continuously pumped around the stack in a circulation loop. Flow is controlled through a pump and mass flow regulator.

## Stack thermal management

The electrolyser stack generates heat as well as hydrogen and oxygen gas. This heat must be managed through a thermal management system; in case of Alkaline Electrolysis this is typically managed by cooling the lye recycle stream in a fan assisted radiator heat exchanger. Liquid-liquid heat exchange coupled with heat rejection to ambient in an external loop can be used alternatively.

## **Product separation and purification**

After the electrolysis process, the products require purification. Both oxygen and hydrogen streams are saturated in lye, which is separated in a gas-liquid flash separator. Additional removal of lye occurs in two sets of scrubbers for each gas. Lye from these two separation steps is returned to the KOH stack circulation loop. Oxygen is usually vented to atmosphere at this stage. If capturing is desirable, further purification may be required. Hydrogen is further purified in a de-oxo unit, where residual oxygen, which occurs due to slipover during electrolysis, is removed by catalytic reaction with hydrogen. Any final remaining water is removed through a combination of cooling/ condensation and in a final drying step, typically through PSA or TSA.







## Component list for an Alkaline Electrolyser (1/2)

| Sub-component                                              | Material(s)                                                                            | Specs                                                                                 |
|------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Anode                                                      | Nickel coated perforated stainless steel                                               | Stainless steel, typically 304 or 316.<br>Modified with Ni, e.g. electrodeposition    |
| Cathode                                                    | Nickel coated perforated stainless steel                                               | Stainless steel, typically 304 or 316.<br>Modified with Ni, e.g. electrodeposition    |
| Electrolyte                                                | Potassium hydroxide (KOH) 5-7 molL <sup>-1</sup>                                       | Water purity, typically < 5 uS/cm, although<br>often more stringent ASTM Type II used |
| Separator                                                  | Zirfon - ZrO2 (zirconium dioxide) reinforced<br>with PPS (polyphenylene sulphide) mesh |                                                                                       |
| Porous transport layer anode                               | Nickel mesh (not always present)                                                       |                                                                                       |
| Porous transport layer cathode                             | Nickel mesh                                                                            |                                                                                       |
| Bipolar plate anode                                        | Nickel-coated stainless steel                                                          | Stainless steel, typically 304 or 316.<br>Modified with Ni, e.g. electrodeposition    |
| Bipolar plate cathode                                      | Nickel-coated stainless steel                                                          | Stainless steel, typically 304 or 316.<br>Modified with Ni, e.g. electrodeposition    |
| Frames and sealing                                         | Polysulfone, polytetrafluoroethylene,<br>ethylene propylene diene monomer              |                                                                                       |
| Stack tensioning system (e.g. SS plates,<br>nuts and bolts | Stainless steel                                                                        |                                                                                       |
| Lye leak containment system                                | Concrete or stainless steel                                                            |                                                                                       |
| Electrical contacting terminals                            |                                                                                        |                                                                                       |

## Component list for an Alkaline Electrolyser (2/2)

| Sub-component                                                                                                                | Material(s)                                                                                       | Specs |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|
| Gas and fluid manifolding                                                                                                    | Stainless steel                                                                                   |       |
| Lye pumps                                                                                                                    |                                                                                                   |       |
| Lye coolers - typically air cooled,<br>alternatively glycol-water based cooling.<br>Piping, fan, radiator and control system |                                                                                                   |       |
| Gas-liquid separators for lye and oxygen/<br>hydrogen                                                                        | Polypropylene or stainless steel (e.g. 316)                                                       |       |
| Scrubbers for removing trace lye from product gases                                                                          |                                                                                                   |       |
| Hydrogen de-oxo unit (catalytic<br>combustion)                                                                               | Typically Pt or Pd catalyst on Al2O3<br>support, Stainless (304 or 316) or carbon<br>steel vessel |       |
| Hydrogen drying unit (PSA / TSA) – see<br>other fact sheets                                                                  |                                                                                                   |       |
| Heat exchange (cooling) for water<br>condensation/separation<br>- combined with power supply cooling                         | E.g. stainless steel, aluminium                                                                   |       |
| Oxygen and hydrogen venting stacks                                                                                           |                                                                                                   |       |





# PEM electrolysis componentry

## **PEM electrolysis stack**

Conceptually, a PEM stack contains the same key components as seen in AE, namely numerous electrolyser cells connected in series, and cells comprising electrolyte and two electrodes. In PEM electrolysers however, the electrolyte is a thin, dense, and gastight, polymer layer, which conducts protons from cathode to anode. The protonic nature of this process, gives an acidic environment and this requires different electrocatalysts which need to be chemically stable in this environment. Currently, the only materials that are known to be both stable and active under these conditions are platinum group metals, which are rare and therefore expensive. To keep cost low, they are usually impregnated in low concentrations in a carbon-based porous membrane layer.

The electrolyte polymer membrane is prone to contamination with impurities, thus requiring higher purity feedwater than alkaline electrolysers. A major advantage of PEM technology is the gastight nature of the electrolyte polymer layer, reducing risk of gas crossover, thus allowing for operation at higher pressures and operating at higher current densities. Gas crossover can still occur in case of mechanical failure, such as a membrane puncture. Multiple stacks can be combined to increase system size and hydrogen production capacity.

## Water circulation

Excess water leaving the anode is separated from oxygen and recycled to the stack inlet/feed supply. PEM stacks require humidification and water levels are continuously monitored to prevent the stack drying out.

## Stack thermal management

The electrolyser stack generates heat as well as hydrogen and oxygen gas. This heat must be managed through a thermal management system; in case of PEM Electrolysis this is typically managed by cooling the water (-oxygen mixture) leaving the anode in a liquid-liquid heat exchanger coupled with heat rejection to ambient in an external loop. Water inlet temperature to the stack can be controlled through controlling coolant flow rates and by adjusting electrolyser production rate.

## Product separation and purification

After the electrolysis process, the products require purification. Both oxygen and hydrogen streams are saturated with water, which is separated in a gas-liquid flash separator, with water recycled to the stack and purified if necessary. As in AE, oxygen is usually vented to atmosphere at this stage. Hydrogen is further purified in a de-oxo unit, where residual oxygen is removed by catalytic reaction with hydrogen. Any final remaining water is removed through a combination of cooling/condensation and in a final drying step, typically through PSA or TSA.



## **PEM Electrolyser**

System Diagram





## Component list for a PEM Electrolyser (1/2)

| Sub-component                                              | Material(s)                                                                | Specs                                                                                                                   |
|------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Anode                                                      | Iridium and Iridium oxide                                                  | Finely dispersed or coated on titanium or alternative supports materials                                                |
| Cathode                                                    | Platinum nanoparticles on carbon black                                     |                                                                                                                         |
| Electrolyte                                                | Perfluorosulfonic acid (PFSA) Membranes                                    |                                                                                                                         |
| Separator                                                  | Perfluorosulfonic acid (PFSA) Membranes                                    |                                                                                                                         |
| Porous transport layer anode                               | Platinum coated sintered porous titanium                                   | Thin Pt coating on titanium felt, applied<br>using advanced coating techniques, e.g.<br>Physical Vapor Deposition (PVD) |
| Porous transport layer cathode                             | Sintered porous titanium or carbon cloth                                   |                                                                                                                         |
| Bipolar plate anode                                        | Platinum-coated titanium                                                   |                                                                                                                         |
| Bipolar plate cathode                                      | Gold-coated titanium                                                       |                                                                                                                         |
| Frames and sealing                                         | Polysulfone, polytetrafluoro-ethylene,<br>ethylene propylene diene monomer |                                                                                                                         |
| Stack tensioning system (e.g. SS plates,<br>nuts and bolts | Stainless steel                                                            |                                                                                                                         |
| Electrical contacting terminals                            |                                                                            |                                                                                                                         |
| Gas and fluid manifolding                                  | Stainless steel                                                            |                                                                                                                         |

## Component list for a PEM Electrolyser (2/2)

| Sub-component                                               | Material(s)                                                                                 | Specs                                                                                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Water pumps                                                 |                                                                                             |                                                                                                                                              |
| Stack humidity monitoring/control                           |                                                                                             |                                                                                                                                              |
| Stack water flow management system                          |                                                                                             |                                                                                                                                              |
| Cooling unit                                                |                                                                                             | Typically liquid-liquid heat exchanger, such<br>as glycol-water based cooling. Piping, fan,<br>radiator and control system (thermal sensing) |
| Gas-liquid separators for water and oxygen/hydrogen         | Polypropylene or stainless steel (e.g 316)<br>vessel                                        |                                                                                                                                              |
| Hydrogen de-oxo unit (catalytic<br>combustion)              | Typically platinum (Pt) or palladium (Pd)<br>catalyst on Aluminium Oxide (Al2O3)<br>support | Stainless steel (304 or 316) or carbon steel<br>vessel                                                                                       |
| Hydrogen drying unit (PSA / TSA) – see<br>other fact sheets |                                                                                             |                                                                                                                                              |
| Heat exchange (cooling) for water condensation/separation   | E.g. stainless steel, aluminium                                                             |                                                                                                                                              |

Oxygen and hydrogen venting stacks

# SO Electrolyser

## Overview

Solid Oxide Electrolysers (SOEs) differ from PEM and Alkaline electrolysers as they utilise heat to make hydrogen from steam. SOE electrolyser stacks are made from a mix of ceramics and metal that can handle very high temperatures of >500°C.

SOEs are best placed where there is a waste heat source available (e.g. nuclear or industrial facilities) as it can utilise this heat to reduce the electrical requirement to produce hydrogen. The main advantage of SOEs is their high system efficiency of 80-90%, if waste heat can be used. There is also an opportunity to capture and use the excess heat from electrolysis to improve efficiency further. However, SOEs are not able to ramp up and down very quickly due to the high temperatures involved, therefore are better suited to base load requirements.

A 3D diagram of an SO electrolyser including all the auxiliary components associated with a complete system is shown here. As well as the electrolyser stack, the system includes key components required to supply the input water and mix it with the potassium hydroxide electrolyte, supply the input electricity, cool the system as required and purify the outputs from the stack.

Fans





# SO electrolysis componentry

## Solid Oxide Electrolysis stack

Due to the high temperature operation of SOE stacks, cell and stack components typically comprise ceramic and metallic materials. As in PEM, the electrolyte provides gastight separation of anode and cathode compartments and is typically a dense oxide ion conducting material. such as stabilised zirconia, although cells based on high temperature proton conducting materials are in research and development stage. The high temperature operating conditions allow for inexpensive electrocatalysts for the hydrogen evolution reaction, such as nickel; complex perovskite oxides are typically used on the anode side. Major challenges for SOE are the high temperature cell sealing and degradation of materials under the demanding conditions.

Like PEM and AE, most SOE stacks are based on planar cells, stacked in series. Other architectures are possible however, such as tubular cell designs, which can offer advantages in high temperature sealing. Multiple stacks can be combined to increase system size and hydrogen production capacity.

## Stack thermal management

Thermal management is in many ways more straightforward in SOE than in low temperature electrolysis stacks. Heat generated through electrical resistance can be utilised to maintain the stack temperature and to preheat incoming steam and air, thereby lowering external heat demand and negating the requirement for external heat rejection. Remaining heat demand is typically met electrically with the stack assembly housed inside a high temperature furnace or hot box. Waste heat from other processes can be utilised in heat exchangers, heating inlet water/steam and air. Other componentry that requires operation at high temperature is all housed inside this well insulated hotbox. In case of pressurised operation, there is the potential for recovery of mechanical energy through turbine expanders

## Product separation and purification

Product separation for high temperature electrolysis is somewhat simpler than for the low temperature technologies. Oxygen from SOE is generally not separated, as it is already diluted in air. Hydrogen leaving the stack is saturated with steam, which is removed by a combination of cooling, flash separation and further drying using PSA/TSA. A de-oxo unit, as used in AE and PEM, can normally be omitted as any oxygen crossing over in the stack will have reacted directly with hydrogen to form water at the high operating conditions.



14



Electricity

**SO Electrolyser** 



## Component list for Solide Oxide Electrolysis (SOE, 1/2)

| Sub-component                                                                                 | Material(s)                                                                                                                                                                   | Specs                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel electrode/cathode                                                                        | Nickel (Oxide) (Ni/NiO) + Yttria-Stabilised<br>Zirconia (YSZ)                                                                                                                 | Typically submicron to several micron<br>particle size. Minimum 40 vol% Nickel (Ni)<br>for electronic percolation                                                                     |
| Electrolyte                                                                                   | Yttria-Stabilised Zirconia (YSZ)                                                                                                                                              | Typically submicron particle size powders or dense sintered substrates                                                                                                                |
| Oxygen electrode/Anode                                                                        | Perovskite materials, typically Lanthanum<br>Strontium Cobalt Ferrite (LSCF) or<br>Lanthanum Strontium Manganite (LSM)                                                        | Typically submicron particle size powders.<br>Chemical composition can vary                                                                                                           |
| Current collector                                                                             | Silver (Ag)/gold (Au)/platinum (Pt)/nickel<br>(Ni) mesh                                                                                                                       |                                                                                                                                                                                       |
| Sealing gasket                                                                                | Mica/thermiculite/glass-ceramics                                                                                                                                              |                                                                                                                                                                                       |
|                                                                                               |                                                                                                                                                                               |                                                                                                                                                                                       |
| Interconnector                                                                                | Stainless steel, or specialist alloys,<br>possibly with coatings to reduce<br>chromium (Cr) evaporation                                                                       | Examples: AISI430, AISI316, Crofer APU<br>22, Crofer 22H, Ducralloy, CFY, Chromium<br>Iron Pentachromium (CrFe5), etc. Coatings<br>typically manganese,cobalt (Mn,Co)-spinel<br>based |
| Interconnector<br>Stack tensioning system (e.g. SS plates,<br>nuts and bolts, high T springs) | Stainless steel, or specialist alloys,<br>possibly with coatings to reduce<br>chromium (Cr) evaporation<br>Stainless steel or oxidation resistant<br>alloys, e.g. Inconel 600 | Examples: AISI430, AISI316, Crofer APU<br>22, Crofer 22H, Ducralloy, CFY, Chromium<br>Iron Pentachromium (CrFe5), etc. Coatings<br>typically manganese,cobalt (Mn,Co)-spinel<br>based |



## Component list for Solide Oxide Electrolysis (SOE, 2/2)

| Sub-component                                                                                                                 | Material(s)                                                                                                                              | Specs                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Gas and fluid manifolding                                                                                                     | Stainless steel, or high temperature alloys,<br>e.g. Inconel 600 or 625                                                                  | Dependent on operating conditions.<br>Coatings may be applied for added<br>oxidation resistance |
| Elecrtrical furnace and/or hot box                                                                                            | Furnace insulation (alumina-silicate based)<br>and suitable heating elements, e.g. Silicon<br>carbide (SiC), furnace/temperature control |                                                                                                 |
| Heat exchangers                                                                                                               | Plate-fin or tube-shell                                                                                                                  | Suitable for high temperature operating conditions, e.g. Inconel 625 or 718                     |
| Turbine expanders for mechanical energy<br>recovery – optional                                                                |                                                                                                                                          |                                                                                                 |
| Gas-liquid separators for steam/hydrogen<br>mixture                                                                           | Typically stainless steel (e.g. 316)                                                                                                     |                                                                                                 |
| Hydrogen drying unit (PSA / TSA) - see<br>other fact sheets                                                                   |                                                                                                                                          |                                                                                                 |
| Heat exchange (cooling) for water<br>condensation/separation and hydrogen drying<br>steps -water or water-glycol cooling unit | Stainless steel, (e.g. 304 or 316), or<br>aluminium (Al) if suitable under process<br>conditions                                         |                                                                                                 |
| Oxygen enriched air and hydrogen venting stacks                                                                               |                                                                                                                                          |                                                                                                 |
|                                                                                                                               |                                                                                                                                          |                                                                                                 |



# **Balance of Plant componentry**

(all electrolyser technologies 1/3)

## Water supply

The electrolysis process requires a purified source of water, as contaminants in the water negatively impact on the process. Effects include parasitic production of unwanted side products as well as damage to the electrolyser stack components, reducing its lifetime. The overall process can take a variety of water sources, although installed purification systems are typically designed to process tap water. Other sources of water may be considered in future, such as fresh water, waste water treatment plant effluent, or sea water, but they may require additional levels of feedstock purification.

## Water purification

Water purification systems usually combine a number of purification steps, including filtration steps (for solids and organics), a Reverse Osmosis (RO) unit and an Ion Exchange unit. Different levels of water purity are required for different electrolyser technologies, with PEM generally requiring water with highest purity. Water purities are often stated in terms of conductivity, see table. The equivalent reagent purity standard (ASTM D1193-06) is also listed.

## High temperature operation

SOE requires a supply of steam. This is ideally achieved by using waste heat from other processes, but usually also requires some additional heat supply. Steam evaporators with pressure control are additional componentry.

| Technology | Water<br>conductivity<br>(µS/cm) | Equivalent<br>purity<br>standard<br>(ASTM D1193-06) |
|------------|----------------------------------|-----------------------------------------------------|
| AE         | <5                               | Type IV                                             |
| PEM        | <1                               | Туре II                                             |
| SOE        | <5                               | Type IV                                             |

## Water supply componentry

### Water pumps

Water pressurisation module / pressure control

## Steam evaporator (SOE only)

Heat exchangers (SOE) - Material suitable under process conditions, e.g. stainless steel

## Mass flow control

Reverse Osmosis units

## Deionising unit / ion exchange unit

Filtration / adsorption (e.g. activated carbon and Polypropylene or PVC meshes)

Tubing suitable for DI water – typically PP or PE. Passivated SS can be used alternatively (passivation according to AMS 2700 Type VI)



## (all electrolyser technologies 2/3)

## **Electrical supply**

Electrolyser systems are typically supplied by a 3 phase AC power supply at 380-415 V, which enters the system through a distribution box (including breakers/isolators) and feeds into a switchgear cabinet which contains a number of power electronics components, such as rectifiers and transformers. The switchgear cabinet, which is integral to the overall electrolyser system, subsequently supplies the various electrolyser components with the appropriate electrical power. The electrolyser stack requires a DC power supply to operate, and depending on stack size and electrical configuration, typically operates with currents of > 1,000 A and several 100s VDC. This DC power supply is typically generated from a rectifier unit which is part of the switchgear unit. The power electronics also supply a single phase 240V supply for any additional balance of plant components (e.g. water purification and gas purification), as well as several 24VDC control systems.

Keeping operating voltages below 1500 VDC means electrolysers are regulated by the Low Voltage

### **Electrical components**

Power electronics, incl. Transformer, Rectifier, DC/DC converter

Distribution box

Isolators / emergency shutdown features

Earthing and bonding

### Control systems

Wiring and contacting for different supply subsystems (stack DC, single phase AC and 24VDC)

Power supply cooling unit - ethylene or propylene glycol-water based cooling unit (pump, fan, radiator and piping plus control system)



## (all electrolyser technologies 3/3)

This list of remaining componentry includes process control componentry, thermal management equipment, electrical switchgear and safety features. Alkaline electrolysers systems are typically deployed as containerised units on concrete foundations, mostly in 40ft shipping containers. Energy recovery and integration can enhance overall system efficiency and is of particular importance for SOE, which can utilise high grade waste heat from other processes, such as ammonia synthesis, refining or steel making, to lower electrical demand. Pressurised operation also offers opportunities to recover heat by passing product streams, such as enriched air, through turbine expanders and extracting mechanical work.

Additional safety features include pressure and temperature monitoring linked to pressure relief valves and overall process control allowing process shutdown. Absolute and differential pressure transducers can be used to indicate abnormal stack behaviour, such as excessive gas crossover in AE/PEM. Oxygen detection in hydrogen and vice versa are also deployed to keep product gas compositions within safe parameters. External gas monitoring equipment allows for leak detection and response incl. shutdown. Vent stacks are used for safe release of oxygen and excess hydrogen. Ventilation systems in enclosed spaces (containers) are essential to prevent build up of flammable atmospheres.

### **Generic BoP components**

| Heat exchangers, radiators and cooling fans                 | Electrical cabling, terminals, cable harnesses and cable storage/gutters                                                   |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Liquid/water/lye pumps                                      | Electrical signalling (control systems and sensors)                                                                        |
| Pressure gauges                                             | Electrical switchboard and electronics cabinets                                                                            |
| Pressure transducers – absolute and<br>differential         | Electrical safety and interlocks                                                                                           |
| Back pressure regulators                                    | Shipping containers and suitable coatings for protection against weather, typically C2                                     |
| Temperature sensing e.g. thermocouples,<br>and control (HX) | Acoustic shielding                                                                                                         |
| Mass flow control                                           | Stairways, handrails, safety barriers                                                                                      |
| Control valves – solenoid (actuated)                        | Concrete foundations and plinths                                                                                           |
| Multidirectional and non-return valves                      | Earthing and drainage                                                                                                      |
| Ball valves                                                 | Gas detection – fixed location and handheld                                                                                |
| Pressure relief valves                                      | Lightning protection                                                                                                       |
| Burst valves                                                | Warning signage                                                                                                            |
| Pipework - stainless steel ASTM 316/304                     | Ventilation / air circulation system linked to gas<br>detection – incl. air filters and louvres installed<br>in containers |
| Compression fittings or orbital welded                      |                                                                                                                            |
| Process control systems                                     |                                                                                                                            |
| Turbine expanders for mechanical energy recovery            |                                                                                                                            |

## Standards and codes of practice (1/3)

| Organisation                                     | Standard                                                                           | Details                                                                                                     | Date of<br>Publication      |
|--------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|
| Electrolyser Standards - Low Te                  | mperature Electrolysis (AE and PE                                                  | EM)                                                                                                         |                             |
| International Organisation of<br>Standardisation | ISO 22734 - Expected to be<br>replaced by ISO/FDIS 22734-1  <br>ISO/AWI TS 22734-2 | Hydrogen generators using water electrolysis<br>- Industrial, commercial, and residential<br>applications   | Edition 1<br>Published 2019 |
| Electrolyser Standards - High Te                 | mperature Electrolysis (SOE)                                                       |                                                                                                             |                             |
| International Electrotechnical<br>Commission     | IEC 62282                                                                          | The collection of standards that establishes performance and safety requirements for fuel cell technologies | Between 2012<br>and 2025    |
| Codes of Practice                                |                                                                                    |                                                                                                             |                             |
| British Compressed Gases<br>Association          | Code of Practice 4                                                                 | Gas supply and distribution systems (excluding acetylene)                                                   | Revision 5: 2020            |
|                                                  | Code of Practice 34                                                                | The application of Pressure Equipment (Safety)<br>Regulations to customer sites                             | Revision 2: 2024            |



## Standards and codes of practice (2/3)

| Organisation                | Standard                                                                      | Details                                                                                                                                                                                            | Date of<br>Publication                           |
|-----------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Directives                  |                                                                               |                                                                                                                                                                                                    |                                                  |
| Health and Safety Executive | ATEX - 2014/34/EU                                                             | Two EU directives which describe the minium<br>safety requiements for workplaces and<br>exquipment used in explosive atmoshperes<br>- ATEX Workplace Directive and the ATEX<br>Equipment Directive | Published in 2014<br>and applicable<br>from 2016 |
| Health and Safety Executive | Dangerous Substances and<br>Explosive Atmospheres<br>Regulations 2002 (DSEAR) | Require employers to control the risks to safety from fire, explosions and substances corrosive to metal                                                                                           | Published 2002                                   |
| Health and Safety Executive | Pressure System Safety<br>Regulations (PSSR)                                  | The aim of these Regulations is to prevent serious<br>injury from the hazard of stored energy as a<br>result of the failure of a pressure system or one<br>of its component parts.                 | Published 2000                                   |
| European Commission         | Pressure Equipment Directive<br>(PED) 2014/68/EU                              | Applies to the design, manufacture and<br>conformity assessment of stationary pressure<br>equipment with a maximum allowable pressure<br>greater than 0.5 bar.                                     | Current<br>consolidated<br>version: 2014         |



## Standards and codes of practice (3/3)

| Organisation                                     | Standard                                    | Details                                                                                                                                                                                                                                                                                                                                                                            | Date of<br>Publication         |
|--------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Directives                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| European Commission                              | Electromagnetic Compatibility<br>2014/30/EU | Limits electromagnetic emissions from<br>equipment to ensure that, when used as intended,<br>such equipment does not disturb radio and<br>telecommunication, as well as other equipment.<br>The directive also governs the immunity of such<br>equipment to interference and seeks to ensure<br>that this equipment is not disturbed by radio<br>emissions, when used as intended. | Published March<br>2014        |
| European Union                                   | Low Voltage Directive 2014/35/EU            | Ensures that electrical equipment within certain<br>voltage limits provides a high level of protection<br>for European citizens, and benefits fully from the<br>single market. It has been applicable since 20<br>April 2016.                                                                                                                                                      | Applicable since<br>April 2016 |
| European Agency for Health and<br>Safety at Work | Machinery Directive 2006/42/EC              | Lays down health and safety requirements for<br>the design and construction of machinery, placed<br>on the European market                                                                                                                                                                                                                                                         | Last update<br>June 2024       |













## **Scottish Enterprise**

Atrium Court 50 Waterloo Street Glasgow G2 6HQ

www.scottish-enterprise.com

