HSSMI | 🕖 Scottish Enterprise | ARUP

Manufacturing for Clean Heat in Scotland

Factsheet 1: Heat Generation

Pages	Contents
2-3	Introduction
	Main Components:
4-10	 Industrial and Domestic Heat Pumps
11-17	 Industrial Electrode and Domestic Electric Boilers
18-21	Geothermal Drill Rigs
22-24	Summary of Manufacturing Processes
25-26	Market Information
27	Next Steps

HSSMI / F Scottish Enterprise ARUP

What is Clean Heat?

Clean heat refers to heat generation, distribution, and building energy efficiency technologies that provide heating and hot water with minimal environmental impact. Key technologies include heat pumps, heat networks, and direct electric systems, supported by measures to reduce heat demand and optimise usage through sensors, controls, and efficient design.

These factsheets aim to guide Scottish manufacturers to understand and enter the clean heat sector. Factsheet 1 focuses on key technologies used for Heat Generation.

Factsheet 1	Factsheet 2	Factsheet 3	Factsheet 4	Factsheet 5	Factsheet 6
Heat Generation	Heat Network Distribution	Heat in Properties	Technology Enablers	Building Energy Efficiency	Energy Centre Construction
 Industrial Heat Pumps Domestic Heat Pumps Electrode Boilers Electric Boilers Geothermal Drill Rigs 	 Pipework Circulation Pumps Valves Corrosion Control Storage Buffers 	 Radiators Underfloor Heating Infrared Panels Hot Water Cylinders Storage Heaters 	 Control Panels Thermostats Sensors and Meters Actuators Design Apps 	 Cladding Insulation Windows & Doors Ventilation Systems Offsite Manufacturing 	 Large Thermal Store Large Pumps Structural Steel Electrical Switchgear Cabling

Clean heat presents significant market opportunities for Scotland, UK and internationally. Clean heat is essential for all buildings to meet Scotland's 2045 net-zero target. This will be achieved via Local Heat and Energy Efficiency Strategies regulations, and the proposed Heat in Buildings Act. Already from April 2024, all new buildings must include clean heat systems. Existing buildings will require energy efficiency upgrades and clean heat retrofits and urban areas will see new heat networks (Heat Networks Act 2021).

Clean heat generators offer benefits to decarbonising heat, making them an attractive option for both residential and industrial.

Key heat generators technologies include:

- Industrial and domestic heat pumps pump, heat exchanger, compressor.
- Industrial Electrode Boilers boiler, electrode heating element.
- Domestic Electric Boilers boiler, electric heating element.
- Geothermal Drill Rig drill bit, pipework.

What are heat generators

Clean heat generators are systems designed to produce heat with minimal environmental impact.

They utilise renewable or low-emission energy sources to provide heating for residential, commercial, or industrial applications.

Benefits of clean heat generators:

- Reduced Greenhouse Gas Emissions: Clean heat generators have a lower carbon footprint compared to traditional fossil fuel-based heating systems.
- Energy Efficiency: Many clean heat generators, like heat pumps are highly efficient.
- Renewable Energy Utilisation: The use of clean heat generators will tend to use renewable sources of energy which reduces dependency on fossil fuels.
- Improved Air Quality: Lower emissions of pollutants contribute to better air quality.
- Net Zero Targets: Clean heat generators are a crucial part of the transition to sustainable energy systems, helping to reduce environmental impact and promote energy efficiency.

Heat Generation: Industrial Heat Pump - Introduction

ARUP

Industrial heat pumps transfer heat from the ground, air, or water to provide heating and cooling for buildings or district networks.

Ħ

HSSMI 🦸 Scottish Enterprise

ARUP

5

Key subcomponents of an industrial pump are the expansion valve, compressor and heat exchanger.

Heat exchanger	Heat Exchanger Efficiently transfers the heat between two or more fluids without mixing them.	Compressor	Compressor Is a mechanical device that increases the pressure of a gas (refrigerant) by reducing its volume.	Expansion	Expansion Valve Regulates the flow of refrigerant into the evaporator, reducing its pressure and temperature to optimise heat absorption and
Subcomponents	Finned (fins, tubes), Shell (casing, tube plate, tubes, baffles), Plate (cover, plate, gasket, bolts)	Subcomponents	Housing, impeller, piston, rotor, valves, bearings, motor	Subcomponer	efficient operation. Valve body, diaphragm, sensing bulb, spring, valve seat and orifice
Typical Weight	100 kg to several tonnes	Typical Weight	several tonnes	Typical Weigh	t 0.5 kg to several kg
Typical Dimensions	1 m up to 5 m	Dimensions	system	Typical Dimensions	10-20 cm (l), 5-10 cm (w), 5-15 cm (h)
Standards	EN13445, PD 5500 and HEI Standards	Standards	1217, EN 1012-1 & 1012-2	Standards	ISO 5149, EN 378

ARUP

Domestic heat pumps transfer heat from the ground, air, or water for heating and cooling for buildings using renewable energy.

Key subcomponents of a domestic heat pump are shown below.

lî ↓

	Heat exchanger	H A ol p h e m m	eat Exchanger llows efficient peration of the heat ump, transferring the eat between two or fore fluids without ixing them.
	Subcomponents		Finned (fins, tubes), Shell (casing, tube plate, tubes, baffles) and Plate (cover, plate, gasket, bolts)
I	Typical Weight		5 kg to 25 kg
	Typical Dimensions		15 cm to 30 cm (l), 20 cm to 50 cm (h)
	Standards		EN13445, PD 5500 and HEI Standards

Compressor Is a mechanical device that increases the pressure of the refrigerant to enable the efficient heat transfer process.

Pump

It is a key component and plays a crucial role in circulating the refrigerant through the heat pump system.

Subcomponents	Housing, impeller, shaft, bearings and electric motor
Typical Weight	5 kg to 25 kg
Typical Dimensions	20 cm to 50 cm (l), 15 cm to 30 cm (diam)
Standards	ISO 5199, ISO 9906, BS 5257

MSSMI

Manufacturing processes for the assembly of a heat pump and the fabrication of the major components that make up the product.

MSSMI

Manufacturing processes for assembly of a heat pump and the fabrication of the major components that make up the product.

(9)

ARUP

Main materials and characteristics used in industrial and domestic heat pump manufacturing.

	Component	Material	Dimensions*	Weight*	Standards
0	Pump Casing	Stainless Steel or Cast Iron	0.1 to 0.6 m (d), 0.15 to 1.5 m (l)	1 kg to 3 tonnes	ISO 5199, ANS/HI 9.6.1
d ur	Impeller	Bronze or Stainless Steel	0.5 to 0.4 m (d), 0.05 to 0.3 m (l)	0.2 kg to 500 kg	ISO 9906
P	Motor	Copper, Steel and Carbon	0.1 to 0.5 m (d), 0.15 to 1 m (l)	2 kg to 3 tonnes	IEC 60034
	Shaft	Carbon or Stainless Steel	0.1 m (d), 0.1 to 0.3 m (l)	0.1 kg to 500 kg	ISO 1940
er	Shell	Stainless Steel or Cast Iron	0.01 to 1 m (d), 0.5 to 6 m (l)	5 kg to 3 tonnes	ASME Section VIII
Heat chang	Tubes	Copper, Stainless Steel or Titanium	0.01 to 0.04 m (d), 0.5 to 6 m (l)	0.1 kg to 500 kg	ASTM B75, ASTM A213
Щ	Tube Sheets	Carbon or Stainless Steel	0.01 to 1 m (d), 0.01 to 0.05 m (t)	2 kg to 3 tonnes	ASME Section VIII
sor	Casing	Stainless Steel or Cast Iron	0.15 to 0.08 m (d), 0.2 to 1.5 m (l)	5 kg to 3 tonnes	ASME Section VIII
ress	Impeller	Stainless Steel or Aluminium	0.05 m (d), 0.05 m (l)	0.5 kg to 500 kg	API 617
Idu	Pistons	Aluminium or Cast iron	0.025 to 0.15 m (d), 0.05 m (l)	0.2 kg to 500 kg	API 618
Co	Rotors	Stainless Steel or Aluminium	0.05 m (d), 0.1 to 0.6 m (l)	1 kg to 500 kg	ISO 10440
_	Valve Body	Stainless Steel or Brass	0.01 to 0.15 m (d), 0.05 to 0.3 m (l)	0.2 kg to 2 kg	ISO 5149, EN 378
ansior alve	Diaphragm	Rubber or Synthetics	0.025 to 0.15 m (d), 0.0025 to 0.005 m (t)	0.02 kg to 0.2 kg	ISO 5149, EN 378
C Exp C	Orifice	Stainless Steel or Brass	0.0005 mm to 0.01 m (d), 0.005 m (l)	0.005 kg to 0.05 kg	ISO 5149, EN 378

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

9

ARUP

Industrial Electrode Boilers offer high efficiency, reduced emissions, and enhanced safety, whilst minimising maintenance.

Diagram of an industrial electric boiler

Key Bill of Materials

- 1 Cold water feed & circulation pump
- 2 Control sleeve, jet column & control cylinder rod
- 3 Insulator & electrode
- 4 Counter electrode
- 5 Backup immersion heating element
- 6 Steam outlet

Mhssmi

12

Key subcomponents of industrial electrode boilers are shown below.

Boiler vessel	Boiler Vessel The outer casing of the boiler system containing the water and steam. It can withstand the high pressures and temperatures generated within the vessel under operation.	Heating element	Heating Element Electrodes are solid steel plate with machined holes matching the holes in the bottom of the electrode box for smooth flow to avoid splashing.	Boiler pump	Boiler Pump Ensures the water circulates through the boiler and heating system.		
Typical Weight	A few hundred kilograms to several tonnes	Subcomponent	Sensors, control unit, user interface,	Subcomponents	Casing, impeller, shaft, bearings		
Typical	0.5 m to 2 m (d), 1 m to 5		Varies widely,	Typical Weight	20 kg to several hundred kg		
Typical Capacity	Over 4 MW	Typical Weight	typically a few kilograms each.	Typical	Dependent on system		
Standards	ASME Section I for power	Typical Dimensions	Generally small and lightweight		requirements		
	boilers	Standards	NEC Article 425	Standards	technical specifications for centrifugal pumps.		

Domestic electric boilers offer high efficiency, reduced emissions, and enhanced safety, whilst minimising maintenance.

Key Bill of Materials

- 1 Magnetic Filter
- 2 Circulation Pump
- 3 Pressure Relief Valve
- 4 Expansion Tank
- 5 Hot Water Cylinder with Insulation Jacket
- 6 Auto Air Vent
- 7 Electric Heating Element
- 8 Electronics and Controls

Diagram of a domestic electric boiler

📉 нѕѕмі 📔 💋

Key subcomponents of domestic electric boilers are shown below.

Heating element	Heating Element Immersion heaters or electrode elements that convert electrical energy into heat.	Pump	Pumps The boiler circulating pump is rated for continuous duty at the boiler operating pressure and temperature. Centrifugal type pumps are widely used.	Vessel	Vessel Closed expansion vessels with variable pressure to protect from excessive pressure.		
Subcomponent s	Metal sheath, resistance wire, insulation, safety	Subcomponent	Housing, impeller, shaft, bearings and electric motor	Subcomponents	Expansion vessel, control system, safety devices		
Typical Dimensions	Generally small and lightweight. Typically, a few kilograms each	Typical Weight	2 kgs to 5 kgs.	Typical Weight Typical Dimensions	25 kg to 60 kg 0.5 m to 2 m (d), 1 m to 3 m (l)		
Standards	IEC 60335-2-73 safety of electric heating elements.	Standards	BS EN 12828, BS EN 60335-2-51	Standards	ASME Boiler and Pressure Vessel Code, BS EN 12828		

The typical manufacturing processes for assembly of an industrial electrode boiler. **Electrical Component Testing and Quality Finishing and** Component **Subassembly** Manufacture Assembly Control Packaging Electrode Boiler and Heating Electrode: Manufacturing Process **Finishing and** Assembly: **Cutting and** Testing: Coating: Machined Shaping: Forming: Boiler is tested under Surface Raw materials are Components formed parts, such as operational conditions treatments such cut and shaped into final shapes the heating to verify performance, as painting or into the required element using bending, efficiency, and coating protect assembly and rolling, and stamping components, such Electrode reliability against corrosion control panel as casings boiler and wear **Final Assembly** Material Selection: Assembly: **Fabrication:** Conductive & **Quality Control &** and Integration: Electrode is Electrode is cut to Integrated into mounted into Testing: insulating shape and surface Tested for conductivity, boiler system, the boiler materials treatments such as withstand high system and thermal performance properly polishing & coating and structural integrity connected and temperatures & insulated to enhance conductivity to ensure operational aligned with corrosion, and prevent and resistance to prevent electrical electrical performance other Heating corrosion leakage short circuits components electrode

The typical manufacturing processes for the assembly of a domestic electric boiler.

нсямі 📔

Main materials and characteristics used in electric and electrode boiler manufacturing.

Component	Material	Dimensions	Weight	Standards
Boiler Shell	Stainless Steel, Carbon Steel	0.5 to 2 m	500 kg to several tonnes	ASME Section for Power Boilers
Electric / Electrode Heating Elements	Copper, Stainless Steel	0.5 to 2 m	Few kg to several hundred kg	IEC 60335-2-73 for safety of Electric Heating Elements
Circulation Pump	Stainless Steel, Cast Iron	0.5 m	20 kg to several hundred kg	ISO 5199 for technical specifications for Centrifugal Pump
Safety Valves	Stainless Steel, Brass	0.1 m	Few kg	ASME Section I for Safety Valves
Water Level Gauge	Glass, Stainless Steel	0.5 m	Few kg	ASME Section I for Water Level Indicators

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

Drill rigs for geothermal clean heat systems enable access to deep, high-temperature geothermal reservoirs.

Key Bill of Materials Derrick steel framework 1 Rig floor 2 Pulley system 3 Top drive 4 Draw-works (hoist) 5 Blowout preventer 6 Drill string 7 Tool (drill bit) 8

Diagram of a geothermal drill rig

19

Key subcomponents of a generic geothermal drill rig are shown below.

Drill bit	Drill Bit A specialised tool designed to withstand the extreme conditions of up to 260 °C encountered.	Drill pipe	Drill Pipes They can withstand the harsh conditions encountered, such as high temperatures, high pressures, and abrasive rock formations.	Geo I dri	otherma ill rig	Additional Subcomponents A geothermal drill rig includes several other key components that are essential for efficient and safe drilling operations.
Subcomponents	Cutting elements, Body, Nozzles, Bearings, Gauge Protection,	Subcomponents	Drill pipe, Drill Collars, Tool Joints	Γ		Derrick, Mud Pumps, Blowout Preventer, Rotary
	Shank, Flow Channels, Backreamers	Typical Weight	Between 20 kg/m (standard) up to 100 kg/m (heavy)	Sub	componer	Table, Drawworks, Drilling Fluid
Typical Weight	500 kg (small) to 10,000 kg (large)	Typical	9cm to 14cm		oompone.	System, Casing Equipment,
Typical Dimensions	10 cm to 50 cm (d), 30 cm to 60 cm (l)	Dimensions	(diam), 9.45 m (l)			Instrumentation, Power Generation,
Standards	ISO 10424-1, ISO 9001	Standards	ISO 11961			Well Controls

Typical manufacturing processes for the assembly of a geothermal drill rig.

21

Main materials and characteristics used in geothermal drill rig manufacturing.

Component	Material	Dimensions	Weight	Standards
Drill Bit	Diamond, Tungsten Carbide, High Strength Steel	21 cm to 45 cm	100 kg to 300 kg	API Spec 7-1, API RP 7G, ISO 10424- 1, ISO 9001, ASTM Standards
Drill Pipe (String)	High Strength Steel Alloys	90 cm to 130 cm (w), 9.45 m (l)	20 kg/m to 38 kg/m	API Spec 5DP, API Spec 7-1, ISO 11961, ISO 104-1, ASTM A106/A106M
Derrick	Structural Steel	30 m to 45 m (h), 10 m x 10 m (footprint)	-	API Spec 4F, API RP 4G, ISO 13626, ISO 9001, ASTM Standards
Blowout Preventer	High Strength Steel Alloys, Elastomers	18 cm to 50 cm (bore)	10 tonnes to 20 tones	API Standard 53, API Spec 16A, API Spec 16C, API 16D, ISO 13533, ISO 9001
Rotary Table	High Strength Steel	49 cm to 76 cm (central opening)	-	API Spec 7K, API RP 7L, ISO 14693, ISO 9001, ASTM Standards
Drawworks	High Strength Steel	3 m to 4.5 m (l), 2.4 m to 3 m (w), 24 m to 35 m (h)	9 tonnes to 23 tonnes	API Spec 7K, API RP 500, ISO 13535, ISO 10423, ASME B30.7
Casing Equipment	High Strength Steel, Corrosion Resistant Alloys	50 cm to 250 cm (d)	60 kg/m to 110 kg/m	API Spec 5CT, API RP5C1/5C5, ISO 11960, ISO 10400, ASME B31.3 & 8

*The dimensions and weights are approximate and can vary based on the specific requirements of the materials and the manufacturer's design standards.

🗙 нssmi 📔

Scottish Enterprise | ARUP

Summary of the key processes and equipment required for manufacturing heat pump components.

Process	Equipment/Facilities	Expansion Valve	Pump	Heat Exchanger	Compressor
Casting, Milling, Drilling	Furnaces, CNC Machining, Drilling Machines	Х	Х		Х
Tube/Metal Forming, Bending	CNC Tube Benders, Roll Bending Machines, Stamping Presses			Х	Х
Welding, Brazing, Soldering	Welding Machines, Cutting Torches, Fabrication Tools		Х	Х	Х
Hardening, Tempering, Annealing	Furnaces, Quenching / Induction / Tempering Equipment		Х	Х	Х
Painting, Powder Coating, Plating	Spray Booths, Curing Ovens, Electroplating Equipment	Х	Х	Х	Х
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х	Х	Х	Х
Clean Room	Air Filtration, Ventilation, Environmental Control Systems	Х		Х	Х
Refrigerant Fill	Pumps, Refrigerant Filling Stations, Leak Detectors			Х	Х
Final Test and Quality Control	Vision Inspection, EOL testing	Х	Х	Х	Х

HSSMI **F** Scottish Enterprise

ARUP

Summary of the key processes and equipment required for manufacturing electric and electrode boilers.

Process	Equipment/Facilities	Electric Boiler	Electrode Boiler
Tube / Metal Forming and Bending	CNC Tube Benders, Roll Bending Machines, Stamping Presses	Х	Х
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, and Fabrication Tools, Furnace	Х	Х
Heat Treatment	Furnaces, Quenching Equipment, Induction Hardening Machines, Tempering Furnaces	Х	Х
Painting including Powder Coating and Plating	Spray Booths, Powder Spray Guns, Powder Feed System, Curing Ovens, Mixing and Dispensing Systems	Х	Х
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х	Х
Clean Room	Air Filtration and Ventilation Systems, Environmental Control Systems, Monitoring and Testing Equipment	Х	Х
Final Test and Quality Control	Vision Inspection, EOL Testing	Х	Х

Summary of the key processes and equipment required for manufacturing geothermal drill rigs.

Process	Equipment/Facilities	Geothermal Drill Rig
Tooling	CNC machining, Heat Treatment Equipment	Х
Tube / Metal Forming & Bending	CNC Tube Benders, Roll Bending Machines, Stamping Presses	Х
Welding, Brazing and Soldering	Welding Machines, Cutting Torches, and Fabrication Tools, furnace	Х
Heat Treatment	Furnaces, Quenching Equipment, Induction Hardening Machines, Tempering Furnaces	Х
Assembly Line	Conveyors, Robotic Systems, Assembly Machines	Х
Material Handling	Lifting Equipment (Light Duty-Max 1T)	Х
Final Test and Quality Control	Vision Inspection, EOL Testing	Х

Market size and growth.

Heat Pumps (domestic)

The UK heat pump market is growing rapidly, driven by government initiatives and increasing demand for energy-efficient solutions.

- Market Size: UK heat pump market is expected to have an annual growth rate (CAGR) of 11.1% from 2024 to 2029.
- Annual Deployment Rate: The UK government aims to increase the number of heat pump installations to 600,000 units per year by 2028.
- Current Deployment: UK had 60,000 heat pumps installed in 2024 (43% increase), Scotland had 7,600, up 18%.

Electric Boilers

- The Scottish Enterprise report on Market Opportunities for Scottish Direct Electric Heat Manufacturing highlights opportunities in the electric heat market.
- The UK heating equipment market, which includes electric boilers, is expected to grow at a CAGR of 4.7% from 2022 to 2027, with the UK residential boiler market projected to grow at a CAGR of 6.8% from 2023 to 2033.

UK Electric Boiler Installations (units)

Support available and competitor analysis.

Scotland

Scottish Local Authorities have a Local Heat and Energy Efficiency Strategy (LHEES) and LHEES Officers with a local view clean heat system plans.

- The Heat Network Fund provides capital funding to support development of low or zero emission district heat networks.
- Home Energy Scotland administer grants and loans for domestic properties, including a grant for installing heat pumps.
- Business Energy Scotland administer grants and loans for commercial properties, including the SME Loan Fund.

UK

From April 2025, the Clean Heat Market Mechanism (CHMM) is designed to increase the number of domestic heat pumps being deployed.

England and Wales

- The Boiler Upgrade Scheme provides a grant for householders to install a heat pump.
- The Heat Network Investment Project (HNIP) provides funds supporting deployment of heat networks, which can include geothermal projects.
- Heat Pump Investment Accelerator Competition: Up to £30 million for private sector investment in heat pump and component manufacturing.

Competitor Analysis

Heat Pumps

- The EHPA publishes a <u>map</u> of heat pump manufacturing facilities across Europe.
- In Scotland manufacturers include Star Renewables (industrial), Mitsubishi Electric and Likido.

Electric and Electrode Boilers

 Manufacturers are Cochran (industrial) / Thermaflow (Scotland), Worcester Bosch / Baxi (England) and Vaillant (Germany)

Geothermal Rigs

- Manufacturers are located outside the UK in USA and Europe including Geoprobe Systems, Diedrich Drill Inc, and HARDAB.
- OSSO are a Scottish company that has diversified from oil and gas into geothermal.

Scottish Enterprise can support you to explore growth in clean heat.

Clean Heat Market Opportunities

Clean heat will play a crucial role in meeting Scotland's net zero targets. There is a huge growth potential for Scottish businesses too.

- For general enquiries, and to access our Clean Heat team, please contact us
- For specialist advice on manufacturing and productivity, <u>contact the</u> <u>Scottish Manufacturing Advisory Service (SMAS)</u>
- For information on domestic and international markets contact our
 <u>Market Research service</u>
- If you are based in the Highlands and Islands, or the south of Scotland, please contact <u>Highlands and Islands Enterprise</u> or <u>South</u> <u>of Scotland Enterprise</u> respectively.

Newsletter

Please complete this subscription form if you would like to receive an occasional newsletter from Scottish Enterprise on market opportunities relating to clean heat.

Subscribe here

Further Reading

- <u>Market Opportunities for Scottish Direct Electric</u> <u>Heat Manufacturing (2023)</u>
- Economic Value of Clean Heat in Scotland (2024)
- <u>Heat Pump and Heating System Components</u> <u>Analysis (2023)</u>
- Heat Pumps and Heat Networks Assemblies and Key Component Analysis (2022)

External Support Services in Scotland

- <u>National Manufacturing Institute Scotland (NMIS)</u> world-leading manufacturing facilities for collaborative R&D projects
- <u>Built Environment Smarter Transformation (BE-ST)</u> innovation and expertise for projects / materials for the built environment
- The Smart Direct Electric Heat Forum, administered by SELECT, is a new forum for manufacturers of direct electric heat solutions.

